figure 1.png

Laparoscopic-assisted Appendectomy in Children with Uncomplicated Appendicitis

Saeed Al Hindi1, Husain Al Aradi2, Mohamed Mubarak2, Noor AlHashimi3

1Department of Pediatric Surgery, Salmaniya Medical Complex, P.O. Box 12, Manama, Kingdom of Bahrain

2Department of Urology, Salmaniya Medical Complex, P.O. Box 12, Manama, Kingdom of Bahrain

3Department of Pediatrics, Salmaniya Medical Complex, P.O. Box 12, Manama, Kingdom of Bahrain

Correspondence to: Dr. Mohamed Mubarak, Email Address:

Received: 07 December 2019; Revised: 01 June 2020; Accepted: 05 June 2020; Available online: 22 June 2020



Background: Acute appendicitis is one of the common surgical emergencies in the pediatric population. In 1990, laparoscopic-assisted appendectomy was used in children for the first time. In this study, we present our initial experience with laparoscopic-assisted appendectomy in children, using two trocar sites, and assess it for safety and outcome. Methods: 76 cases with acute appendicitis underwent laparoscopic-assisted appendectomy at Salmaniya Medical Complex (SMC), Kingdom of Bahrain, between January 2012 and December 2015. These cases were reviewed prospectively. Results: 76 patients between 5 and 12 years underwent laparoscopic-assisted appendectomy at SMC. Operative time ranged from 25 to 45 min (mean 33.93 min). Postoperative hospitalization ranged from 2 to 5 days (mean 2.88 days). One patient developed wound infection which subsequently subsided with conservative treatment. One case was converted to open appendectomy, but without any intraoperative complications. All patients were followed up for 2 weeks, 1 month, and 3 months postoperatively. Conclusion: Laparoscopic-assisted appendectomy in children is a safe alternative to the open technique. The operative time in this technique and the length of hospitalization are both less and shorter than the open counterpart. No major intra-operative or postoperative complications were documented. Recovery was excellent.

Keywords: Appendicitis, Laparoscopic-assisted appendectomy, Open appendectomy

Ann Afr Surg. 2021; 18(1):34–38


Conflicts of Interest: None

Funding: None

© 2021 Author. This work is licensed under the Creative Commons Attribution 4.0 International License.


Acute appendicitis is one of the common surgical emergencies in the pediatric population (1). It is primarily a clinical diagnosis, with most patients presenting with the classical history of periumbilical pain which intensifies and migrates to the right iliac fossa (RIF) in the first 24 hours. Associated symptoms such as loss of appetite, nausea, vomiting and changes in bowel habits are often present. Clinically, patients are commonly febrile, and abdominal examination reveals localized tenderness and rigidity in the RIF, with associated rebound tenderness.

The first diagnosis of appendicitis was made by Robert Lawson in 1880 (2). In 1893, Charles McBurney described the muscle splitting operation for appendectomy (2). In 1980, German gynecologist Kurt Semm performed the first laparoscopic appendectomy (3,4). The management of acute appendicitis ranges from non-operative treatment in early non-complicated appendicitis (5) to the gold standard appendectomy with low morbidity worldwide (6-11). In children, morbidity ranges from 2.7% in non-complicated appendicitis to 16% in perforated appendicitis (12-15). In 1990 laparoscopic-assisted appendectomy was used in children for the first time (16-18).

The laparoscopic-assisted approach is a technique designed to incorporate the advantages of the complete laparoscopic technique and the open technique. It involves insufflation of the abdomen through an infraumbilical port and the use of 2 trocars instead of the usual 3-trocar technique of traditional laparoscopic appendectomy. In a study by Nicholson and Tiruchelvam, a comparison of the traditional laparoscopic method and the transumbilical laparoscopic-assisted appendectomy (TULAA) demonstrated how TULAA reduces the cost of the laparoscopic technique by USD 400 by reducing mean intraoperative time by 18.6 minutes, the use of surgical supplies, and postoperative hospital stay (1.8 days vs 2.6 days). Such improvements in surgical outcome make TULAA a feasible option in the management of appendectomy (19).

The aim of this study is to present the management and outcome of non-complicated acute appendicitis using the 2-trocar laparoscopic-assisted appendectomy.



Seventy-six cases patients presenting at Salmaniya Medical Complex with the clinical diagnosis of acute appendicitis between January 2012 and December 2015 underwent laparoscopic-assisted appendectomy. In our institution, acute appendicitis is a clinical diagnosis. However, laboratory and imaging adjuncts, such as ultrasonography and computed tomography, are used to rule out other differentials when clinical assessment is equivocal. All patients in this study were diagnosed based on clinical features.

In a cohort study, these cases were reviewed prospectively. Patient ages ranged from 5 to 12 years (mean 9.35 years). Complicated cases of acute appendicitis like generalized peritonitis, appendicular mass and appendicular abscess were excluded.


The technique

Once the diagnosis of acute appendicitis was made all patients were kept on maintenance intravenous fluid and antibiotics. Consent was taken for laparoscopic appendectomy with or without conversion when required.

As for the procedure, the technique described is adapted for our institution. Patients were kept in supine position and under general anesthesia. Foleys catheter and nasogastric tube were inserted. Patients were scrubbed with betadine, with special care given to the umbilical area. A 1.5-cm skin incision was made in the lower edge of the umbilicus and a 5-mm trocar was introduced by open Hasson technique to avoid injury to intra-abdominal viscera. Insufflation of CO2 was maintained between 10 and 11 mmHg, with a low flow rate of 1.5 L/min to reduce postoperative pain (Figure 1).

A 30-degree camera was inserted to visualize the appendix and the intraperitoneal cavity, another 5-mm trocar was inserted in the left lower quadrant using the skin crease for cosmetic reason, then the scope was shifted to the left lower quadrant port and the appendix delivered from the umbilical incision by non-traumatic forceps (Figures 2 and 3).

After deflation of the pneumoperitoneum, appendectomy was p